ディープラーニングのモデルで広く使われているsoftmax関数。しかし、論文やまとめサイトでは「〜の結果をsoftmaxする」のように「softmaxする」と書かれているだけで、softmaxについては説明がない場合が多いですよね。
参考資料・おすすめの参考書

ここまでの学習、お疲れさまでした。そして本記事を最後まで読んでいただきありがとうございました!!
ここでは更に学びを深めたい方々のために、おすすめの参考書と勉強法を紹介します。
おすすめの参考書
softmax関数を含む、ディープラーニングをより詳しく学びたい方は、以下の書籍で詳細を学び、実装してみるのがおすすめです。
おすすめオンラインコース
動画・オンラインコースで学びたい、機械学習からディープラーニングまでを網羅的に学びたい、復習したいという方には以下のUdemyがおすすめです。
【世界で55万人が受講】データサイエンティストを目指すあなたへ〜データサイエンス25時間ブートキャンプ〜

このUdemyのコースは統計学・数学から機械学習・ディープラーニングまでの広い範囲を、非常にわかりやすくまとめた入門コースです。
勉強・復習に便利なのはもちろん、私はチームで共通認識を作るためにチーム全員でこのコースを購入しました。
おすすめの勉強ステップ
1. 概要・大枠を知る。
Webサイトなどで概要を理解する(本サイトはこのステップの支援を目指しています。)
詳細を学ぶ際に、より効率良くインプットできる。
2. 詳細を知る、理解を深める。
書籍、論文でより詳しく学ぶ。
3. 実践・アウトプット
SignateやKaggleに参加してモデルを作ってみる、勉強したことをブログにまとめる。
関連記事|【完全マニュアル】技術ブログを始めるべき理由と始め方。メリット・収益・書き方を徹底解説

個人的には、データサイエンス、特にNLP関係の本は難しく、いきなり本を読むと挫折してしまう人が多いと感じています。
このサイトで概要・全体像を理解してから本を読むことで、より理解しやすく挫折も少なくなるはずです。(その役に立てるよう記事を執筆していきます!)